Circuit diagram symbols
CIRCUIT DIAGRAM SYMBOLS

Electrical network elements

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>three-phase line or cable</td>
<td></td>
<td>single-phase line or cable</td>
</tr>
<tr>
<td></td>
<td>short circuit</td>
<td></td>
<td>earth electrode</td>
</tr>
<tr>
<td></td>
<td>outgoing feeder</td>
<td></td>
<td>supply incoming feeder</td>
</tr>
<tr>
<td></td>
<td>resistor</td>
<td></td>
<td>variable resistor</td>
</tr>
<tr>
<td></td>
<td>reactor or transformer, motor or generator winding</td>
<td></td>
<td>iron core reactor</td>
</tr>
<tr>
<td></td>
<td>capacitor</td>
<td></td>
<td>impedance (Z, R, L or C)</td>
</tr>
<tr>
<td></td>
<td>star-connected winding</td>
<td></td>
<td>delta-connected winding</td>
</tr>
<tr>
<td></td>
<td>varistor or surge arrester</td>
<td></td>
<td>spark gap or overvoltage limiter</td>
</tr>
<tr>
<td></td>
<td>diode</td>
<td></td>
<td>thyristor</td>
</tr>
<tr>
<td></td>
<td>inverter</td>
<td></td>
<td>rectifier</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>source of current</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>metering</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>measuring device</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>electrical power outlet</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch disconnector</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>isolator</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fuse</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch-fuse</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>circuit-breaker</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>circuit-breaker fitted with a (thermal) overload and (magnetic) short-circuit trip relay</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>contactor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fuse contactor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>drawout circuit-breaker</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>changeover switch</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>transformer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>changeover circuit-breaker</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Abbreviations

- **UPS**: uninterruptible power supply
- **PIM**: permanent insulation monitor
- **RCD**: residual current device
- **IT**: unearthed neutral and earthed exposed conductive part
- **N**: neutral
- **NC**: normally closed
- **NO**: normally open
- **PE**: protective conductor
- **PEN**: combined protective and neutral conductor
- **Ph₁, Ph₂, Ph₃**: phase 1, 2, and 3
- **TN**: earthed neutral and neutral-connected exposed conductive part
- **TNC**: earthed neutral, neutral-connected exposed conductive part, combined neutral and protective conductor
- **TNS**: earthed neutral, neutral-connected exposed conductive part, separate neutral conductor and protective conductor
- **TT**: earthed neutral and earthed exposed conductive part
- **Z₁//Z₂**: signifies that impedances Z₁ and Z₂ are in parallel.
BIBLIOGRAPHY OF DIAGRAM SYMBOLS

- **standards**
 - **IEC 27-1** (12.1992): letter symbols to be used in electrical technology
 - **IEC 617-2** (1983): graphic symbols for diagrams, second part: symbol elements, qualifying symbols and other symbols having general application
 - **IEC 617-7** (1983): graphic symbols for diagrams, part seven: switchgear, controlgear and protective devices
BIBLIOGRAPHY OF DIAGRAM SYMBOLS

- **standards**
 - **IEC 27-1** (12.1992): letter symbols to be used in electrical technology
 - **IEC 617-2** (1983): graphic symbols for diagrams, second part: symbol elements, qualifying symbols and other symbols having general application
 - **IEC 617-7** (1983): graphic symbols for diagrams, part seven: switchgear, controlgear and protective devices
CHAPTER 1 BIBLIOGRAPHY

■ standards

■ Schneider cahiers techniques

□ Automatic changeover switching on LV and HV network supplies, Cahier Technique n° 75, G. Thomasset

□ Guide to the design of industrial HV systems, Cahier Technique n° 124, M. Dana

□ High availability electrical power distribution, Cahier Technique n° 148, A. Longchamp, G. Gatine

□ MV public distribution networks throughout the world, Cahier Technique n° 155, Ch. Puret

□ HV industrial network design, Cahier Technique n° 169, G. Thomasset

■ Schneider publications

□ Electrical installation guide, (07.1996), ref. MD1 ELG 2E
CHAPTER 2 BIBLIOGRAPHY

■ standards

- **IEC 364**: Electrical installations of buildings
- **IEC 801-2**: Electromagnetic compatibility for industrial-process measurement and control equipment. Part 2: Electrostatic discharge requirements
- **IEC 801-3**: Electromagnetic compatibility for industrial-process measurement and control equipment. Method of evaluating susceptibility to radiated electromagnetic energy
- **IEC 801-4**: Electromagnetic compatibility for industrial-process measurement and control equipment. Part 4. Electrical for transient/burst requirements

■ Schneider cahiers techniques

- **Neutral system in LV and MV networks up to 20 kV**, Cahier Technique n° 20, J.B. Bézin
- **Earthing of the neutral conductor in High-Voltage networks**, Cahier Technique n° 62, F. Sautriau
- **Residual current devices**, Cahier Technique n° 114, R. Calvas,
- **MV public distribution networks throughout the world**, Cahier Technique n° 155, Ch. Puret
- **HV industrial network design**, Cahier Technique n° 169, G. Thomasset
- **Earthing systems in LV**, Cahier Technique n° 172, B. Lacroix, R. Calvas
- **Earthing systems worldwide and evolutions**, Cahier Technique n° 173, B. Lacroix, R. Calvas

■ Schneider publications

- **Medium voltage protection guide**, (1990 - 05), ref. CG0021X
- **Electrical installation guide**, (1996 - 07), ref. MD1 ELG 2E
CHAPTER 3 BIBLIOGRAPHY

 standards

- **IEC 146-1-1** (03.1991): semiconductor convertors. General requirements and line commutated convertors. Part 1-1: specifications and basic requirements

- **IEC 1000-3-2** (03.1995): electromagnetic compatibility (EMC). Part 3: limits. Section 2: limits for harmonic current emissions (equipment input current ≤ 16 A per phase)

- **IEC 1000-3-5** (12.1994): electromagnetic compatibility (EMC). Part 3: limits. Section 5: limitation of voltage fluctuations and flicker in low-voltage power supply systems for equipment with rated current greater than 16 A

- **EN 50160** (05.1995): voltage characteristics of electricity supplied by public distribution systems

 Schneider cahiers techniques

- **Behaviour of the SF6 MV circuit-breakers Fluarc for switching motor starting currents**, Cahier Technique n° 143, J. Hennebert, D. Gibbs
- Electromagnetic compatibility, Cahier Technique n° 149, F. Vaillant
- Control, monitoring and protection of HV motors, Cahier Technique n° 165, JY. Blanc,

- Schneider publications
- Electrical installation guide, (1996 - 07), ref. MD1 ELG 2E

- Other publications
- 3-phase cage induction motors, LEROY-SOMER technical catalogue
CHAPTER 4 BIBLIOGRAPHY

■ standards

- EN 50160 (05.1995): voltage characteristics of electricity supplied by public distribution systems

■ Schneider cahiers techniques

- Process generating plants in industrial systems, Cahier Technique n° 99, P.Bibollet
CHAPTER 5 BIBLIOGRAPHY

■ standards

- **IEC 60-01** (1989): high-voltage test techniques: part 1: general definitions and test requirements
- **IEC 76-3** (1980): power transformers. Part 3: insulation levels and dielectric tests
- **IEC 364**: electrical installations of buildings
- **IEC 831-1** (1988): shunt power capacitors of the self-healing type for a.c. systems having a rated voltage up to and including 660 V. Part 1: General - Performance, testing, and rating - Safety requirements - Guide for installation and operation

■ Schneider cahiers techniques

- **The behaviour of SF6 puffer circuit-breakers under exceptionally severe conditions**, Cahier Technique n° 101, J.C. Henry, G. Perrissin, C. Rollier
- **Behaviour of the SF6 circuit-breakers Fluarc for switching motor starting currents**, Cahier Technique n° 143, J. Hennebert, D. Gibbs
- **Overvoltages and insulation co-ordination in MV and HV**, Cahier Technique n°151, D. Fulchiron
- **Control, monitoring and protection of HV motors**, Cahier Technique n° 165, JY Blanc
- **Lightning and Hv electrical installations**, Cahier Technique n° 168, B. De Metz-Noblat
- **Breaking by auto-expansion**, Cahier Technique n° 171, G. Bernard
CHAPTER 6 BIBLIOGRAPHY

- **standards**
 - IEC 269-1 (1986): low-voltage fuses, part 1: general requirements
 - IEC 287 (1982): calculation of the continuous current rating of cables (100% load factor)
 - IEC 364: electrical installations of buildings
 - IEC 898 (04.1992): circuit-breakers for overcurrent protection for household and similar applications

- **Schneider publications**
 - Electrical installation guide, (07. 1996), ref. MD1 ELG 2E
CHAPTER 7 BIBLIOGRAPHY

■ standards

- IEC 831-1 (1988): shunt power capacitors of the self-healing type for a.c. systems having a rated voltage up to and including 660 V. Part 1: General - Performance, testing, and rating - Safety requirements - Guide for installation and operation

■ Schneider cahiers techniques

- Switching MV capacitor banks, Cahier Technique n° 142, D. Koch

■ Schneider publications

- LV application guide: power factor correction and harmonic filtering. Rectiphase, ref. CG0064E

- LV capacitors and banks, Rectiphase, ref. AC0373/2E

- Rectiphase medium voltage capacitors and equipment catalogue, ref. AC0303/2E

- Electrical installation guide (07.1996), ref. MD1 ELG 2E
CHAPTER 8 BIBLIOGRAPHY

- **standards**
 - **IEC 146-1-1** (03.1991): semiconductor convertors. General requirements and line commutated convertors. Part 1-1: specifications and basic requirements
 - **IEC 146-4** (1986): semiconductor convertors. Part 4: Method of specifying the performance and test requirements of uninterruptible power systems
 - **IEC 831-1** (1988): shunt power capacitors of the self-healing type for a.c. systems having a rated voltage up to and including 660 V. Part 1: General - Performance, testing, and rating - Safety requirements - Guide for installation and operation
 - **IEC 1000-2-4** (02.1994): electromagnetic compatibility (EMC). Part 2: environment. Section 4: compatibility levels in industrial plants for low-frequency conducted disturbances
 - **IEC 1000-3-2** (03.1995): electromagnetic compatibility (EMC). Part 3: limits. Section 2: limits for harmonic current emissions (equipment input current ≤ 16 A per phase)

- **Schneider cahiers techniques**
 - **Harmonics in industrial networks**, Cahier Technique n° 152, P. Roccia, N. Quillon
 - **Inverters and harmonics (case studies of non-linear loads)**, Cahier Technique n°159 J.N. Fiorina
 - **Harmonics upstream of rectifiers in UPS**, Cahier Technique n° 160, J.N. Florina
 - **Active harmonic conditioners for unity power factor rectifiers**, Cahier Technique n° 183, E. Bettega J.N. Florina
CHAPTER 9 BIBLIOGRAPHY

■ standards

- EN 50160 (05.1995): voltage characteristics of electricity supplied by public distribution systems

■ Schneider cahiers techniques

- MV public distribution networks throughout the world, Cahier Technique n° 155, Ch. Puret
- Automatic changeover switching on L.V. and H.V. network supplies, Cahier Technique n° 75, G. Thomasset
- Control, monitoring and protection of HV motors, Cahier Technique n° 165, JY. Blanc
- HV industrial network design, Cahier Technique n° 169, G. Thomasset
- Protection of industrial and commercial MV networks, Cahier Technique n° 174, A. Sastré
CHAPTER 10 BIBLIOGRAPHY

- **standards**
 - IEC 812 (1985): analysis techniques for system reliability - Procedure for failure mode and effects analysis
 - IEC 863 (1986): presentation of reliability, maintainability and availability predictions

- **Schneider cahiers techniques**
 - Introduction to dependability design, Cahier Technique n° 144, P. Bonnefoi
 - High availability electrical power distribution, Cahier Technique n° 148, A. Longchamp, G. Gatine
 - Dependability of MV and HV protection devices, Cahier Technique n° 175, M. Lemaire
 - Industrial approach to dependability, Cahier Technique n° 134, H. Krotoff
CHAPTER 12 BIBLIOGRAPHY

■ standards

☐ IEC 354 (09.1991): loading guide for oil-immersed power transformers

■ Schneider cahiers techniques

☐ Automatic changeover switching on L.V. and H.V. network supplies,
 Cahier Technique n° 75, G. Thomasset
CHAPTER 13 BIBLIOGRAPHY

 standards

- IEC 76-2: power transformers. Part 2: temperature rise
- IEC 364: electrical installations of buildings
- IEC 50160 (05.1995): voltage characteristics of electricity supplied by public distribution systems

 Schneider cahiers techniques

- Guide to the design of industrial H.V. systems, Cahier Technique n° 124, M. Dana
- Enclosures and degrees of protection, Cahier Technique n° 166, J. Pasteau
- HV industrial network design, Cahier Technique n° 169, G. Thomasset
- Protection of industrial and commercial MV networks, Cahier Technique n° 174, A. Sastré

 Schneider publications

- Industrial network protection guide, C. Prévé (05-1996), ref. 02 888 608/BE
- SELENA, calculating short-circuit currents according to IEC 909 (10.1995), F. Dumas, T. Rutgé
- Electrical installation guide (07.1996), ref. MD1 ELG 2E